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ABSTRACT 
This work is part of an effort aimed at developing computer- 
based systems for language instruction; we address the task of 
grading the pronunciation quality of the speech of a student of a 
foreign language. The automatic grading system uses SRI’S 
DecipherTM continuous speech recognition system to generate 
phonetic segmentations. Based on these segmentations and 
probabilistic models we produce pronunciation scores for 
individual or groups of sentences. Scores obtained from expert 
human listeners are used as the reference to evaluate the different 
machine scores and to provide targets when training some of the 
algorithms. In previous work [l] we had found that duration- 
based scores outperformed HMM log-likelihood-based scores. In 
this paper we show that we can significantly improve HMM- 
based scores by using average phone segment posterior 
probabilities. Correlation between machine and human scores 
went up from r=0.50 with likelihood-based scores to r=0.88 with 
posterior-based scores. The new measures also outperformed 
duration-based scores in their ability to produce reliable scores 
from only a few sentences. 

1. INTRODUCTION 
The possibility of accepting speech input in computer-based 
language instruction systems allows developers to complement 
reading and listening comprehension with activities of 
production and conversation. In these systems, the computer may 
provide some feedback of the kind that an instructor would 
produce, such as an assessment of the quality of pronunciation or 
pointing to specific production problems or mistakes. Speech 
recognition technology is the key allowing such feedback. 
However, standard speech recognition algorithms were not 
designed with the goal of speech quality assessment; therefore, 
new methods and algorithms must be devised to approximate the 
perceptual capabilities of human listeners to grade speech 
quality. 

The aim of this work is to develop methods for automatic 
assessment of pronunciation quality, to be used as part of a 
computer-aided language instruction system [ 1][2]. The basic 
pronunciation scoring paradigm [3][4][5] uses hidden Markov 
models (HMMs) [6] to generate phonetic segmentations of the 
student’s speech. From these segmentations, we use the HMMs 

to obtain spectral match and duration scores. The effectiveness of 
the different machine scores is evaluated based on their 
correlation with expert human scores on a large database. 
Previous approaches were based on statistical models built for 
specific sentences [5]. The current algorithms were designed to 
produce pronunciation scores for arbitrary sentences, that is, 
sentences for which there is no acoustic training data [l]. This 
approach allows great flexibility in the design of language 
instruction systems because new pronunciation exercises can be 
added without retraining the scoring system. 

We extend previous work [I] by introducing a new HMM-based 
score based on phone posterior probabilities. Thelevel of human- 
machine correlation for this new score was significantly better 
than both likelihood and duration scores for the case of sentence 
specific scoring. When averaging scores across several sentences 
corresponding to a given speaker to obtain speaker-level scores 
we found that the new method required fewer sentences to 
achieve a similar level of correlation. We also investigated the 
combination of different machine scores to obtain a higher level 
of correlation. We experimented with linear and nonlinear 
regression as well as with an estimation-based approach to 
predict human scores from machine scores. 

2. THE DATABASE 
The requirements of data needed for development of the scoring 
system are more demanding than those typical of speech 
recognition systems [I]. A database of transcribed native read 
speech is used for training models for speech recognition and 
pronunciation scoring. A database of nonnative read speech is 
transcribed and scored for pronunciation quality at different 
levels of detail by expert human raters. 

Speech was recorded from 100 natives of Parisian French (native 
corpus) and from 100 American students speaking in French 
(nonnative corpus). All the speech was recorded in quiet offices 
using a high-quality Sennheiser microphone. 

A panel of five French teachers, certified language testers, rated 
the overall pronunciation of each nonnative sentence on a scale 
of 1 to 5 ranging from unintelligible to native quality. There was 
some overlap in the speech material rated by the teachers for 
consistency checking. The five teachers were selected from a 
group of ten based on their consistency in a pilot study. All the 
teachers were government-certified in language testing. 
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3. PRONUNCIATION SCORING 

3.1. Human Scoring 
The human scores are the reference against which the 
performance of the automatic scoring systems should be tested 
and calibrated; as such, it is important to assess the consistency 
of these scores both between raters (inter-rater correlations) and 
individually within each rater (intra-rater correlations). 

Human judgments were provided by five raters on speech data 
from 100 students. A more detailed analysis of the human scores 
was presented in [l]. Two types of correlation were computed: at 
the sentence level pairs of corresponding ratings for all the 
individual sentences were correlated; at the speaker level, first, 
the scores for all the sentences from each speaker were averaged, 
and then the sequence of pairs of corresponding average scores 
for each of the speakers was correlated. 

The consistency within and across raters was assessed in a subset 
of the database that was rated by all five raters and twice for each 
rater. The average sentencdspeaker level inter-rater correlation 
was r=0.65/0.8; the average correlation between a rater and the 
average of apool of the other raters was r=0.76/0.87. The average 
intra-correlation at the sentence level was -0.76. These values 
may be considered upper bounds on what could be reasonably 
expected performance for the machine scoring system. 

3.2. Automatic Scoring 
The different pronunciation scoring algorithms studied are all 
based on phonetic time alignments generated using SRI’S 
DecipherTM HMM-based speech recognition system [6]; these 
HMMs have been trained using the database of native speakers. 

To generate the alignments for the student’s speech we must 
know the text read by the student. We do this by eliciting speech 
in a constrained way in the language learning activities, and then 
backtracking the time-aligned phone sequence using the Viterbi 
algorithm. From these alignments, and statistical models 
obtained from the native speech, different probabilistic scores are 
derived for the student’s speech. The statistical models used to do 
the scoring are all based on phone units and as such, no statistics 
of specific sentences or words are used. Consequently, the 
algorithms are text independent. 

Here, we review some of the previously introduced scoring 
algorithms in [l] along with the newly introduced posterior 
probability-based score. 

3.2.1. HMM-based phone log-likelihood scores 

In this approach we use the HMM log-likelihood to derive a 
score. The underlying assumption is that the logarithm of the 
likelihood of the speech data, computed by the Viterbi algorithm, 
using the HMMs obtained from native speakers is a good 
measure of the similarity (or match) between the native speech 
and the students‘s speech. For each sentence the phone 
segmentation is obtained along with the corresponding log- 

likelihood for each segment. Then, for each phone segment we 
define the normalized log-likelihood Zi as 

li = l j /dj ,  (1)  

where l j  is the log-likelihood corresponding to the i -th phone 
and d, is its duration in frames. 

The likelihood-based score for a whole sentence L , is defined as 
the average of the individual normalized log-likelihood scores for 
each phone segment, 

. N  
1 

N L =  
i = l  

where the sum run over the number of phones in the sentence N .  

3.2.2. HMM-based phone log-posterior probability 
scores. 

In this case we use a set of context-independent models along 
with the HMM phone alignment to compute an average posterior 
probability for each phone. First, for each frame belonging to a 
segment corresponding to the phone qi we compute the frame- 
based posterior probability P(qilyr), of the phone i given the 
observation vector y r  : 

(3) 

j = 1  

where p(y,(qi) is the probability density of the current 
observation using the model corresponding to the qi phone. The 
sum over j runs over a set of context-independent models for all 
phone classes. P(qJ  represents the prior probability of the 
phone class qi . 
Similarly to the previous case, the average of the logarithm of the 
frame-based phone posterior probability over all the frames of 
the segment is defined as the posterior score p, for the i-th phone 
segment: 

r, + d ,  - 1 

(4) 
’ r = r ,  

The posterior-based score for a whole sentence p is defined as 
the average of the individual posterior scores over the N phone 
segments in a sentence: 

N 

(5) 
i = l  

We expect that the posterior-based score could be less affected by 
changes in the spectral match due to particular speaker 
characteristics or acoustic channel variations. The same changes 
in acoustic match would affect both numerator and denominator 
similarly in Eq. (3), making the score more invariant to those 
changes and more focussed on the phonetic quality. 
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3.2.3. Segment duration scores 

The procedure to compute the phone-based duration score is as 
follows: first, from the Viterbi alignment we measure the 
duration in frames for the i-th segment; then its value is 
normalized to compensate for rate of speech. To obtain the 
corresponding phone segment duration score, the log-probability 
of the normalized duration is computed using a discrete 
distribution of durations for the corresponding phone. The 
discrete duration distributions have been previously trained from 
alignments generated for the native training data. Again, the 
corresponding sentence duration score is defined as the average 
of the phone segment scores over the sentence 

~~ 

Likelihood score 

Posterior score 

3.3. Combination of Scores 

0.33 0.50 

0.58 0.88 

The combination of several different machine scores may allow 
to get a better prediction of the desired estimate of the human 
score. We investigated the use of linear and nonlinear regression 
as well as an estimation method. 

In the linear regression we linearly combine two or more machine 
scores for each sentence, plus a bias term, to approximate the 
actual human score. The linear coefficients are optimized to 
minimize the mean square error between the predicted and the 
actual human scores over the sentences of the development set. 

For the nonlinear regression the machine scores to be combined 
are the input to a neural network that computes the mapping 
between the multiple machine scores and the corresponding 
human scores. The actual human scores provide the targets for 
the training of the network. The network has a single linear 
output unit and 16 sigmoidal hidden units. It was trained with 
backpropagation using cross-validation on 15% of the training 
data. The training is stopped when performance degrades on the 
cross-validation set. 

The regression approaches assume that the inputs are noiseless 
and that the only source of randomness is in the predicted 
variable; this assumption is clearly wrong in our case where both 
machine and human scores are highly noisy. To overcome this 
assumption we used an estimation procedure to get a prediction 
of the human scores based on the machine scores. 

In this method the predicted human score h is computed as the 
conditional expected value of the actual human score h given the 
measured machine scores m l ,  m2, . . . , m, : 

h = E[h(m,',m2, ..., m,] 

To compute the expectation we need the conditional probability 
P(hlm,,  m2, , .., m,) that we compute as 

I 

P ( m l , m 2 ,  . . . , m , J h  ) P ( h )  
P(hlml,  m2, ..., m,) = 

P ( m p  111.2, ..., m,Jhi)P(h;) 
i =  1 

where P ( h )  is the prior probability of the score and the 
conditional distribution P ( m l ,  m2, ..., m,lh) is modeled 
approximately by a discrete distribution based on scalar or vector 
quantization of the machine scores. 

3.4. Experimental Results 
We evaluated first, in terms of its level of correlation, the 
performance of the individual scores we have presented. Then, 
the effect of the number of sentences whose scores are averaged 
in the computation of correlation at the speaker level was studied. 
Finally, we evaluated the methods to combine the different types 
of machine scores in order to obtain a better prediction of the 
human scores. 

3.4.1. Human-machine correlation of individual 
scores 

We evaluated each of the proposed methods experimentally by 
computing the correlations between machine and human scores 
at the sentence and the speaker level. The speech material 
consisted of 5089 different sentences read from newspapers by 
100 nonnative speakers. These sentences were rated at least once 
by one human rater. The different machine scores for each 
individual sentence were correlated with the corresponding 
human ratings. 

When obtaining the machine scores for each sentence, in all the 
experiments we removed the scores of the phones in context with 
silence because their alignments may be inaccurate. Doing so 
produced a small but consistent increase in the correlation for all 
the machine score types. 

At the speaker level, about 50 sentence scores were averaged for 
each of the 100 speakers before the correlation was computed. 
The results are presented in Table 1. 

Correlation Coeff. 
Algorithm 

I Normalizeddurationscore I 0.47 I 0.84 I 
Table 1: Sentence- and speaker-level correlations between 
human and machine scores using 100 nonnative speakers and 
about 50 utterances per speaker. 

We see that at the sentence level the posterior-based score has the 
highest correlation, followed by the duration score having a 20% 
lower correlation. At the speaker level the normalized duration 
and the log-posterior scores are comparable, rendering a 
performance similar to that of the human raters as we showed in 
Section 3.1. The log-likelihood score is the worst at both the 
sentence and speaker levels. 

Sentence-level correlations are still lower than those among 
humans, suggesting that further work is needed to predict 
pronunciation ratings using only a single utterance. 
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3.4.2. Effect of different amounts of speaker data 

We calculated the speaker-level correlation between human and 
machine scores using various amounts of test data. We varied the 
number of sentences per speaker (N) from 1 to 50 in obtaining the 
averaged score for each speaker. The human scores were the 
speaker averaged scores of the 100 speakers, using the entire 
human score data. We randomly chose N sentences per speaker 
to obtain the speaker-average machine score. We repeated this 
random experiment 40 times and averaged the correlation values 
for each N. 

Combination 

0 ( L k o h M )  

0 3  
100 10’ 1 0 2  

Numbor of ~ n t o n o o s  por sprabr N (Lop aslo)  

Fig. 1. Speaker level correlation for posterior, duration, and 
likelihood scores for different numbers of sentences per 
speaker 

As we can see in Fig. 1, the posterior probability score performs 
the best for every N, but particularly well for low values of N, 
which is attractive for this application. 

3.4.3. Combination of scores 

We evaluated combining different types of machine scores in 
order to increase the correlation at the sentence level. We divided 
the 5089 sentences into two equally sized sets with no common 
speakers. We estimated the parameters of the regression and 
estimation models in one set and evaluated the correlation of the 
predicted and actual human scores in the other set. Then we 
repeated the procedure with the sets swapped and averaged the 
correlation coefficients. 

Machine scorcs correlation 

posterior 0.58 

I I 1 I 

Nonlinear 

Estimation 

posterior + duration 0.62 

posterior + duration (sca- 0.60 
lar quantization) 

~~ I Linear I posterior + duration 1 0 . 5 9  1 

I Estimation I posterior +duration (VQ) I 0.62 I 
Table 2: Sentence level correlations between human and com- 
bined machine scores. 

In Table 2 we show the average correlation coefficients for the 
different types of score combination. Linear combination of 
posterior and duration scores produced a minor increase in 
correlation. The nonlinear combination using a neural network 
was more effective, increasing the correlation 7% with respect to 
that of the single posterior score. The estimation method using 
vector quantization of the scores was better than the one using 
scalar quantization and was comparable to the nonlinear 
combination method. 

4. SUMMARY 
We introduced a new HMM-derived score based on posterior 
probabilities of phone segments, and compared its performance 
with previously proposed pronunciation scores applied at both 
sentence and speaker levels. 

At the sentence level, the posterior probability score had a 20% 
higher correlation with human scores than that obtained using 
duration scores. At the speaker level it also showed better 
performance, particularly when using few sentences to compute 
speaker-level scores. 

An additional 7% increase in correlation at the sentence level was 
obtained by combining posterior and duration scores using 
nonlinear regression with a neural network, or, alternatively, 
using an estimation method to predict the human scores given the 
machine scores. 
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